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SUMMARY

Inferring the beliefs, desires, and intentions of other
people (‘‘theory of mind,’’ ToM) requires special-
ized psychological processes that represent the
minds of others as distinct from our own [1–3].
ToM is engaged ubiquitously in our everyday social
behavior and features a specific developmental tra-
jectory [4] that is notably delayed in children with
autism spectrum disorder (ASD) [5, 6]. In healthy in-
dividuals, model-based analyses of social learning
and decision-making have successfully elucidated
specific computational components of ToM pro-
cessing [7–11]. However, the use of this approach
to study ToM impairment in ASD has been
extremely limited [10, 12]. To better characterize
specific ToM impairment in ASD, we developed a
novel learning task and applied model-based ana-
lyses in high-functioning adults with ASD and
matched healthy controls. After completing a char-
itable donation task, participants performed a
‘‘mentalizer’’ task in which they observed another
person (the agent) complete the same charity
task. The mentalizer task probed the participants’
ability to acquire and use ToM representations. To
accurately predict agent behavior, participants
needed to dynamically track the agent’s beliefs
(true or false) about an experimental context that
varied over time and use that information to infer
the agent’s intentions from their actions. ASD par-
ticipants were specifically impaired at using their
estimates of agent belief to learn agent intentions,
though their ability to track agent belief was intact
and their reasoning about belief and intentions
was rational. Furthermore, model parameters
correlated with aspects of social functioning, e.g.,
ADOS severity scores [13]. Together, these results
identify novel, and more specific, targets for future
research.
Curre
RESULTS

Task Performance Accuracy
We designed and carried out a novel social-learning task (Fig-

ure 1) in 26 high-functioning adults with autism spectrum disor-

der (ASD) and 53 matched healthy controls (CTL) (see Table S1

for participant characterization). After first learning a task that

involved donating to charities (‘‘Charity task’’; Figure S1), partic-

ipants next performed a task in which they observed another

person (the Agent) carry out the same Charity task they had

just completed (‘‘Mentalizer task’’; Figure 1). To accurately pre-

dict the Agent’s behavior, participants needed to learn about

and dynamically track the Agent’s true or false beliefs about

the experimental context (belief) and infer the Agent’s intentions

with respect to their donations (intent). Importantly, Agent beliefs

were a replay of actual choices made during the charity task by a

real (healthy) individual (see STAR Methods for details on Agent

behavior). The dissociation of intentions and beliefs has been a

powerful tool in research on theory of mind (ToM) and moral

judgment [14]; our task is unique in requiring participants to up-

date these representations continuously throughout the trials of

the task, making possible a model-based analysis of the compu-

tations that support them.

To facilitate out-of-sample prediction analyses (see model-

based analysis below), CTL participants were first split into two

groups (CTL1 and CTL2) on the basis of demographic informa-

tion (nCTL1 = 27, nCTL2 = 26; each optimally matched to ASD

group for age, IQ, gender, and education; see Table S1). We

then examined overall accuracy and learning performance in

the Mentalizer task (see Figure 2 and STARMethods for descrip-

tions of the specific variables). This revealed a striking pattern:

despite no observable differences at the beginning of the exper-

iment, as trials progressed, the performance of the ASD group

diverged from that of the CTL groups in a manner consistent

with impairment at learning Agent intentions. To quantify this

learning effect, we compared blocks of trials at the beginning

of the experiment to blocks of trials at the end of the experiment

(Figure 2B; Table S3). (Note: Throughout this paper, we eschew

presentation of p values and instead present only bootstrapped

confidence intervals [CI] [15].) By contrast, estimates of Agent

belief were above chance for all groups (Figure 2A; Table S3)

and overlapped in their confidence intervals (while belief
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Figure 1. Structure of the Mentalizer task

(A and B) After completing the ‘‘Charity task’’ (see

Figure S1), participants completed the ‘‘Mental-

izer task’’ (A), in which they observed another

person’s (the Agent) choices while that person

completed the charity task. On each trial, Agents

chose whether to donate to charities in two con-

texts: ‘‘normal’’ mode (in which 36% of agent

decisions were subsequently reversed by the

computer) and ‘‘reversal’’ mode (64% of decisions

reversed). Thus, to obtain desired outcomes,

Agents needed to take context into account.

Importantly, the context switched every 3–12 tri-

als, and though Agents knew that the mode was

‘‘stable across multiple trials,’’ they were unaware

of when switches occurred (note: switches were

explicitly revealed to the participant). (B) The

probabilistic nature of the context and choice re-

versals meant that Agents regularly had false

beliefs [14] about the context. On each trial, par-

ticipants viewed pictures of the agent and one of

three charities and were asked to estimate (1) the

Agent’s belief about the current mode (normal/

reversal), (2) the Agent’s intent (donate/keep), and

(3) the Agent’s choice (donate/keep), which criti-

cally depended on the logical integration of belief

and intent. Four response options enabled par-

ticipants to indicate more certain (check marks)

and less certain (question marks) responses; for

analysis all responses were binarized (two left

options pooled, two right options pooled).

Following the response, Agent choice, and

whether it was reversed by the computer, were

revealed. Probe trials required participants to

report the actual program mode (normal/reversal), ensuring attention. Red-dotted boxes indicate trials where a false belief should be inferred. (Note: Random

ordering of belief and intent questions had no influence on performance.) See also Figure S1 and Methods S1.
performance was slightly better for CTL compared to ASD

groups, this difference was not born out by the more sensitive

model-based approaches; see below). This pattern indicates

that CTL, but not ASD, participants were able to use their repre-

sentations of Agent beliefs to correctly interpret agent actions

and therefore learn about the Agent’s intentions. Whereas belief

and intent are temporally persistent states that are inferred over

multiple trials, predicting an Agent’s choice is unique for each

trial. Given that the probabilistic values of belief and intent

needed to be integrated to generate choice predictions, partici-

pants were close to chance in accurately estimating choice

(though both CTL groups exceeded chance performance and

ASD did not; Table S3), and we found no effect on the relatively

insensitivemeasure of choice learning over the course of the task

(Figure 2C).

To ensure the behavioral impairment we identified in the ASD

group did not result simply from a failure to understand our task,

we first assessed participants’ reasoning consistency (i.e., their

belief and intent estimates should logically predict their choice

estimates in each trial). Both ASD and CTL consistency rates

were well above chance (Figure 2D; Table S3) and overlapped

in their confidence intervals, indicating that ASD participants un-

derstood the logic of the task, even though they had difficulty

learning agent intent. Second, we examined Charity task perfor-

mance (see STAR Methods for details) and found that both ASD

and CTL participants performed equivalently (BeliefCTL = 0.67,
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CI95% [0.64, 0.71]; BeliefASD = 0.71, CI95% [0.64, 0.78]; Outcome

DesiredCTL = 0.58, CI95% [0.56, 0.61]; Outcome DesiredASD =

0.58, CI95% [0.54, 0.62]; ConsistencyCTL = 0.78, CI95% [0.74,

0.82]; ConsistencyASD = 0.73, CI95% [0.67, 0.80]), indicating

that all participants had understood the structure and require-

ments of the task and that ASD participants had no difficulty

knowing their own intentions. Finally, performance in reporting

what the current mode was (normal or reversal, probed at

random; see Supplemental Information) was statistically equiva-

lent across groups (accuracies: ProbeCTL = 0.94, CI95% [0.91,

0.96], ProbeASD = 0.91, CI95% [0.84, 0.94]), again indicating

that all participants understood the task. To summarize, stan-

dard performance metrics of accuracy and learning of the ToM

components (belief and intent) in the Mentalizer task revealed

a disproportionate impairment: high-functioning adults with

ASD were impaired in their ability to use ToM to infer the inten-

tions of another person. We next applied a model-based

approach to further elucidate the learning computations that

underlie these initial findings.

Model-Based Analyses
Data from each group (ASD/CTL) were fit using a combination of

modified Rescorla-Wagner reinforcement learning models (Fig-

ure 3A; hierarchical fitting; see STAR Methods and Figure S2).

Our a priorimodel (M1, Figures 3A and S2) had two free parame-

ters, lB (learning rate for belief) and lI (learning rate for intent), and
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Figure 2. Behavioral Results

Accuracy and learning performance for each group (CTL1, light gray; CTL2,

dark gray; ASD, white).

(A) Belief: Overall accuracy (%) of belief estimates (normal/reversal) was above

chance for all groups, which did not differ from one another.

(B) Intent learning (% change in mean intent accuracy between first 30 and last

30 trials): Both CTL groups showed significant improvements in the ability to

predict Agent intent (donate/keep), whereas ASD performance was at chance.

(C) Choice learning (% change in mean choice accuracy between first 30 and

last 30 trials): No groups showed significant improvements in mean choice

accuracy; however, we note that, for both CTL groups (and not for ASD),

overall choice accuracy was above chance performance (see Supplemental

Information). Note: The overall pattern of learning results (B and C) is robust to

the number of trials included in % change analysis (examined for 20-, 30-, and

40-trial averages).

(D) Participant consistency (%): Trials were consistent if participants’ answers

for choice were logically predicted by their answers for belief and intent. Both

ASD and CTL had high consistency rates that did not differ from each other.

For all panels, error bars represent bootstrapped 95% confidence intervals

(CIs), asterisks above bars indicate 95% CIs that exclude chance accuracy,

asterisks between bars indicate that 95% CIs between participant groups do

not overlap, and individual participant data is represented by gray points. See

also Tables S1–S5.
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Figure 3. Modeling Results

(A) Schematic of the modified Rescorla-Wagner learning model (M1; see

Figure S2 for details). On each trial, participants had to integrate the Agent’s

belief (Bt) and intent (It) to predict their choice (Ct). Inferences of Agent belief

(Bt) could be updated directly using the mode outcome (MOt; i.e., whether a

reversal of Agent choice occurred). The choice outcome (COt) needed to be

viewed within the context of the Agent’s current belief (Bt) to assign the

appropriate intent outcome (IOt). Intent learning rate diminished over time.

(B) Learning rates were similar across groups (CTL1, light gray; CTL2, dark

gray; ASD, white) for belief (lB), but ASD intent learning rates (lI) were signif-

icantly lower than for both CTL1 and CTL2*. Individual participant data is

represented by gray points.

(C) Out-of-sample model accuracy (%; see text for details). Dark and light gray

bars indicate models fit on one CTL group and tested on the other; black and

white bars indicate models fit on either CTL group and tested on ASD. Out-of-

sample model accuracy was similar across groups for belief but significantly

worse in ASD for intent and choice (which did not differ from chance). See also

Figure S2; Tables S1, S2, S4, and S6; and STAR Methods.

For (B) and (C), error bars represent bootstrapped 95% confidence intervals

(CIs). Asterisks above bars indicate 95% CIs that exclude either zero (B) or

chance accuracy (C); asterisks between bars indicate that 95% CIs between

participant groups do not overlap.

*Note: Only belief and intent learning rates were calculated; choice predictions

were computed using the belief and intent model estimates (see A). In addition,

because choice performance is the integration of two probabilistic estimates

(belief and intent) that are <1, model choice performance is expected to be

lower than for belief and intent in (C).
was constructed so that belief estimates could flexibly update

over the course of the experiment (as would happen in reversal

learning),whereas intent learning rates for each charity decreased

as the experiment progressed (reflecting an assumption that par-

ticipants would expect Agent preferences to be stable).

The learning rates for belief (Figure 3B) were greater than zero

for both CTL (CTL1: lB = 0.49; CI95% [0.38, 0.61]; CTL2: lB =

0.63; CI95% [0.52, 0.72]) and the ASD (lB = 0.56; CI95% [0.42,

0.68]) groups, and there were no group differences (CI95% highly

overlapping). In sharp contrast, the mean intent learning rate for

the ASD group (lI = 0.18, CI95% [0.12, 0.25]) was well below that

of either CTL group (CTL1: lI = 0.58, CI95% [0.44, 0.72]; CTL2: lI =

0.48, CI95% [0.32, 0.66]), demonstrating a selective deficit (CI95%
nonoverlapping between groups) in learning the intentions of

Agents by the ASD group.
We further assessed the robustnessofmodel predictive perfor-

mancebyusing themodels thatwere fit to eachCTLgroup topre-

dict out-of-sample CTL and ASD data. To do this, lB and lI were

estimated separately for each group (CTL1 or CTL2) and subse-

quently used to predict the responses for the other two groups

(CTL2 or CTL1, and ASD; Figure 3C). Models estimated with

CTL data were more accurate at predicting out-of-sample CTL

(compared to ASD) intent and choice performance (IntentDiffAcc =

10.4% CI95% = [5.3%,15.7%], ChoiceDiffAcc = 2.8% CI95% =

[0.1%, 5.5%]) but not belief performance (BeliefDiffAcc = 3.3%

CI95% [-1.1%, 7.6%]).

A strength of model-based approaches is that they specify

how a process is implemented with mathematical precision;

however, it is important to rule out alternative models that could
Current Biology 29, 513–519, February 4, 2019 515



A B C Figure 4. Consideration of Alternative

Models

(A) Equations indicating alterations to the a priori

model (M1) for models 2–7 (see STAR Methods

and Figure S2 for full details). In M2, intent learning

rate did not attenuate over time (simple Rescorla-

Wagner); in M3, the actual mode shown to par-

ticipants replaced all belief estimates; in M4, the

actual mode was used to calculate intent out-

comes but not belief estimates; in M5, choice

outcomes were used directly instead of being

interpreted in the context of belief; in models M6

and M7, belief for the entire experiment was set to

normal and reversal, respectively.

(B) Bayesian model comparison results: Protected exceedance probabilities (i.e., how likely it is that any given model is more frequent than all other models) for

eachmodel by group. For both CTL1 (light gray; Bayesian omnibus risk [i.e., the posterior probability that all model frequencies are equal; bor] = 5.9e�6) andCTL2

(dark gray; bor = 1.3e�5) groups, the likelihood of M1 clearly exceeded that of all other models, whereas for the ASD group (white; bor = 0.016), M2 andM5 were

the most likely.

(C) A secondmodel comparison between the threemost likely models (M1,M2, andM5) confirmed the high likelihood ofM1 for the CTL groups (CTL1 bor = 0.004;

CTL2 bor = 0.069) but was unable to distinguish between the three models for the ASD group (bor = 0.775). See also Figure S2 and Tables S1 and S2.
better explain the data. As it is impossible to directly test the

infinite space of all possible models, we tested six additional

models (in addition to our a priori model M1; Figure 4A, see

legend and Figure S2 for details on how the models varied)

that represented specific alternative approaches participants

could have used when completing the Mentalizer task. To deter-

minewhich of these seven candidatemodels best explained per-

formance in each group (CTL1, CTL2, and ASD, respectively) we

performed Bayesian model selection analyses (Figure 4B; see

[16] and STAR Methods for details). These analyses (Figure 4B)

confirmed that our a priori model (M1; Figure 3A) best explained

performance for both CTL groups (CTL1: M1 protected exceed-

ance probability [i.e., how likely it is that any given model is more

frequent than all other models; pxp] = 0.99, Bayesian omnibus

risk [i.e., the posterior probability that all model frequencies are

equal; bor] = 5.9e�6; CTL2: M1 pxp = 0.95, bor = 1.3e�5); how-

ever, this was not the case for the ASD group, whose perfor-

mance was better described by two alternative models (bor =

0.016): M2 (pxp = 0.77), in which intent estimates did not stabilize

over time, andM5 (pxp = 0.21), in which intent updates are based

directly upon Agents’ actions without accounting for agent be-

liefs. As Bayesian model selection is a relative measure, we reran

the Bayesian model selection analysis on the subset of models

(M1, M2, and M5) identified as most likely in the initial analysis

(Figure 4C). This second analysis again confirmed that M1 was

the best model for both CTL groups (CTL1: M1 pxp = 0.99,

bor = 0.004; CTL2: M1 pxp = 0.91, bor = 0.069), while ASD per-

formance was found to be more heterogeneous, with no model

emerging as the most likely (M1 pxp = 0.26, M2 = 0.44, M5 =

0.30, bor = 0.775). Exploratory analyses (data not shown) of

ASD participants’ individual model fits (based on Bayesian Infor-

mation Criterion, BIC), did not reveal a clear explanatory pattern

for whichmodel best explained the data likely because subgroup

sample sizes were too small.

Analysis of Individual Differences
Finally, we examined the relationships between participants’

ToM ability (behavioral accuracy and model parameters) and

their social functioning as measured by the Autism Diagnostic

Observation Schedule (ADOS) [17, 18]. In accordance with our
516 Current Biology 29, 513–519, February 4, 2019
a priori hypothesis (that social dysfunction in ASD arises in part

from ToM learning impairment), we observed negative correla-

tions (Pearson’s r) between behavioral measures of belief accu-

racy (r = �0.39 CI95% = [�0.68, �0.03]) and intent learning

(r = �0.46 CI95% = [�0.78, �0.07]) and the Social Affect (SA;

but not the Restricted and Repetitive Behaviors [RRB]; see Table

S4) component of ASD participants’ ADOS Calibrated Severity

Scores (CSS) [13]. The relationship with belief accuracy is partic-

ularly interesting as it suggests that multiple learning processes

(one independent of ASD-related social impairment, and the

other not) contribute to performance. The lack of a relationship

with RRB CSS scores is consistent with previous findings of

intact non-social learning in ASD [19]. A similar pattern of results

was seen for model belief and intent learning rates (Table S6),

though confidence intervals for these correlations did not

exclude zero. In addition to these a priori analyses, we conduct-

ed post-hoc exploratory analyses of the relationship between

ToM ability and a number of laboratory measures that may index

real-world social functioning (Tables S5 and S6). Only four corre-

lations had 95% confidence intervals that excluded zero after

correcting formultiple comparisons, and all were in the predicted

direction: better performance on metrics of our experimental

task was positively correlated with Social Network Index

(Diversity) [20] and the ‘‘Reading the Mind in the Eyes Task’’

[21] and negatively correlated with AutismQuotient [22]. All other

substantial correlations (regardless of whether their 95% CIs

excluded zero) were directionally supportive of the interpretation

that impairments on our experimental task are associated with

impairments in social behavior. These patterns of correlations

support the external validity of our task and point to future

studies that could identify its real-world correlates with further

precision.

DISCUSSION

Using a novel ToM learning task together with model-based

analyses, we uncovered a specific impairment in ASD: an impair-

ment in the ability to use an understanding of another person’s

beliefs in order to learn about their intentions from observing their

choices. Individuals with ASD were able to track an Agent’s



beliefs about choice context, updating this as the context

(normal or reversal mode) changed, and they rationally inte-

grated their estimates of belief and intent to predict the Agent’s

choice (i.e., they were consistent, even if not accurate). These

findings argue against a nonspecific learning or reasoning deficit

and instead suggest that ASDmay feature impairment in a rather

specific component of ToM, which in our task corresponds to

inferring other peoples’ intentions from their actions while ac-

counting for their beliefs.

There is vigorous debate about the psychological processes

that constitute ToM [23, 24] as well as about the neural systems

that subserve it [25]. These debates highlight the need to decom-

pose ToM into component processes, which could in turn be

related to individual differences and psychopathology. This

broad aim has recently received considerable attention (e.g., in

the RDoC initiative from the National Institute of Mental Health

[26]) and has yielded initial efforts at computational modeling

of ToM [8, 10–12, 27–29]. The benefits of model-based ap-

proaches for understanding the social impairments in disorders

such as ASD are 2-fold. First, by identifying latent factors that are

not directly observable in behavior, a model-based analysis can

identify new targets for study and intervention. It is also likely that

such latent factors provide a closer correspondence to neural

processes that can subsequently be investigated with neuroi-

maging. Second, by decomposing the component processes

of ToM and identifying individual variation in specific processes,

model-based investigations provide a much more fine-grained

characterization of ASD and its possible subtypes, aiding diag-

nosis and ultimately moving toward personalized medicine.

While our model-based approach requires the complexity of a

task that can be decomposed and a large number of trials, mak-

ing it challenging as a clinical instrument (e.g., the approximate

time taken to complete the experiment was 2 h), an important

future direction would be to design simpler and more compact

tasks that might focus just on one component.

The current study thus extends the findings of previousmodel-

based studies of social cognition in a number of ways. First, we

introduce a model-based task derived from classic ToM tasks

(e.g., requiring the representation of true and false beliefs to

infer intention) that permits the deconstruction of specific ToM

component processes and facilitates the discovery of how

they combine to produce ToM. Second, unlike other model-

based studies of social cognition, our study examines learning

about others in the absence of reward, thereby avoiding possible

confounds. Finally, it is the first study to decompose these pro-

cesses in a population that meets diagnostic criterion on the

ADOS, a gold standard in autism research.

The model selection analyses revealed that the computa-

tional mechanisms through which individuals with ASD imple-

ment ToM learning are more heterogeneous than, and possibly

distinct from, those used by healthy controls (whose data were

remarkably consistent). In particular, the findings suggest that

ASD participants were more likely than CTL participants to

follow the Agent’s actions (CO) without considering their be-

liefs (Model 5), and/or their estimates of Agent intent were

less likely than those of CTL participants to stabilize over

time. While beyond the scope of the current study, a clear

next step is to collect data from a much larger sample in a tar-

geted study with a revised task that has been optimized to
distinguish between the identified model alternatives. While

we would expect heterogeneity to emerge, its source remains

an open question that will additionally require longer tasks and

test-retest validation, making its full elucidation challenging. It

is possible that high-functioning individuals with ASD are ho-

mogeneous but noisy in their performance from trial to trial,

it is possible that there are distinct subtypes with different

individuals behaving according to different models, and it is

possible that within-subject variability arises not trial-wise

but over longer temporal epochs. Some of these possibilities

could be tested under hypotheses also motivated by other

studies, for instance, the finding that neural computations in

ASD are less reliable [30].

There are important constraints on the generality of our find-

ings [31]: our task was artificial and did not involve actual social

interactions with people (to increase experimental control), and

the task decomposed an aspect of social cognition that is nor-

mally encountered as a complex combination of processes in

the real world (to achieve the aim of identifying which component

might be disproportionately impaired). These constraints,

respectively, make it important for future work to attempt to

design ecologically valid tasks that better mimic the real world

(perhaps using videos or virtual-reality scenarios) and to verify

that our task did not introduce confounding processes that could

explain the impairment (a difficult challenge that can only be

approached by using a large diversity of different task designs).

Indeed, the power to detect impairments depends crucially on

the exact nature of the task [32]. In order to further decompose

the present findings and ultimately link them to neurobiological

computations, it will also be important to disambiguate several

possible mechanisms that could account for the results thus

far. For instance, does impairment result from an inability to

correctly interpret actions in context (disrupting the computation

of IOt), is intention-updating specifically impaired (whereby lInt is

influenced), or is learning intact but the readout of intention infor-

mation impaired (influencing the use of It)? Some of these ques-

tions could be illuminated by conducting the task we described

in conjunction with neuroimaging, to identify the neural systems

engaged by the component processes. Finally, although the

present study is limited to high-functioning adults with ASD

(necessitated by the demands of the task), the deficit uncovered

here could be further tested with simplified tasks in children and

lower-functioning individuals. This could provide a finer-grained

understanding of how ToM processes are implemented and

change throughout development as well as help identify new

targets for exploration and intervention. An ultimate clinical

goal would be to design a much shorter version of the task

that distills its test of specific ToM components (such as the

intent-learning process revealed here) and validate its diagnostic

and prognostic value.
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(dstanley@adelphi.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants (53 psychiatrically and neurologically healthy adults [CTL], 40male and 13 female; 26 high-functioning adults with autism

spectrum disorder [ASD], 21 male and 5 female) (CTL mean age = 31.6, range = [21-59]; ASDmean age = 29.5, range = [20-59]) were

recruited from an existing pool in our laboratory. ASDparticipants were required to be verbal English speakers, and to havemet DSM-

V/ICD-10 diagnostic criteria for autism spectrum disorder. All met the cutoff scores for ASD on the Autism Diagnostic Observation

Schedule-2 (ADOS-2) revised scoring system for Module 4 [13], as well as the Autism Diagnostic Interview-Revised [35] (ADI-R) or

Social Communication Questionnaire [36] (SCQ) when an informant was available. All participants also possessed a full-scale IQ

score (FSIQ) above 85, determined with one of the versions of theWechsler Adult Intelligence Scale: theWechsler Abbreviated Scale

of Intelligence, 1st or 2nd edition [37, 38]; the Wechsler Adult Intelligence Scale, 3rd or revised edition [39, 40]; or the Wechsler

Intelligence Scale for Children, 3rd edition [41] (1 participant). CTL participants werematched to the ASD group on age, gender, years

of education, and IQ (Table S1), and had no family history of ASD. Two CTL and three ASD participants were excluded for not

performing the task(s) correctly, based on self-report and experimenter observation. In addition, we tested an independent group

of 14 healthy adult subjects, a subset of whom provided the real portion of the Agent data used as feedback in the Mentalizer

task (see below); data from these 14 subjects was not used in any of the analyses reported here. All participants had normal or

corrected-to-normal vision, gave written informed consent under a protocol approved by the Institutional Review Board of the

California Institute of Technology, and were paid for participating in the study.

METHOD DETAILS

Procedure
On the day of the experiment, participants first completed a demographics questionnaire and a ‘‘Day of Visit’’ screening question-

naire containing questions on sleep, drugs or medications taken, and measures of mood. Participants then received an extensive

powerpoint briefing (see Methods S1) as well as practice in the presence of the experimenter to familiarize them with the structure

and rules of the Charity task (see below, Figure S1). Their comprehension was then assessed with a 4 question quiz (seeMethods S1)

and for questions that were answered incorrectly, the relevant logic of the task was again discussed with the participant. Participants

then completed the Charity task (the final check on their understanding of the task was their behavioral performance, see below).

Following the Charity task, participants received a second powerpoint briefing (see Methods S1) describing the Mentalizer task

(see below), and then completed that task.

Upon completion of the Mentalizer task, participants filled out a questionnaire in which they indicated the charity-specific

preferences (i.e., to donate or take) of the individual they were learning about, and then provided information about any strategies

they used during the experiment. The experimenter then randomly selected one trial from each of the Charity and Mentalizer tasks
e1 Current Biology 29, 513–519.e1–e6, February 4, 2019
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and, depending on the task, paid the participant the true outcome (Charity task) and/or a reward of 5$ per correct answer (3 possible)

and $0.50 for each correct probe trial (Mentalizer task). Finally, participants completed any surveys of interest that had not been

completed on a previous visit to the laboratory (see below).

Tasks
The main experimental protocol (the Mentalizer task; Figure 1) consisted of participants learning about another individual’s (the

Agent) preferences and beliefs from observing that individual’s choices in a charitable giving task in varying contexts (the Charity

task; Figure S1). To ensure that participants understood the Charity task and the choices that the Agent was making (i.e., to better

enable them to take the perspective of the Agent), they completed the Charity task themselves before doing the Mentalizer task.

Charity task (Figure S1)

Participants and Agents performed a charitable giving task in which they decided whether to give money to one of three charities

(donate), or take it for themselves (take). On each trial, the participant (or Agent) was shown a picture of one of three charities on

one side of the screen, with ‘‘$10’’ displayed underneath it, and the word ‘‘you’’ displayed on the other side of the screen, with a dollar

amount (ranging from $7-$13) displayed underneath it. The participant then made a choice (donate or take). The computer program

had two modes (or contexts), ‘‘normal’’ and ‘‘reversal.’’ In ‘‘normal’’ mode, the program intervened and reversed the participants’

choices on 36% of trials (leaving them unaltered on 64% of trials). In ‘‘reversal’’ mode the opposite was true, the program reversed

the participants’ choices on 64% of trials (leaving choices unaltered on 36% of trials). Therefore, to obtain their desired outcomes

most of the time, participants would have to reverse their decisions (i.e., choose what they didn’t want) when the program was in

‘‘reversal’’ mode. Importantly, participants were not explicitly aware of the current program mode (except during practice; see

below), and instead needed to track it by observing how often the computer was reversing their decisions. Participants were in-

structed that the mode was ‘‘stable across multiple trials’’ (in actuality 3-12 trials; see Agent data creation below for details), giving

them time to learn, and that every so often it would change. Following the participant’s choice, the computer’s action was displayed

(a blue straight arrow indicated that the choice happened as intended, a yellow curved arrow indicated that the choice had been

reversed), and non-chosen dollar amount was removed from the screen. Finally, the participant answered 2 follow-up questions:

‘‘Was this the outcome you wanted’’? (select thumbs up icon for ‘‘yes,’’ thumbs down icon for ‘‘no’’) and ‘‘what do you think is

the mode now’’? Answers were given in the form of 4-alternative-forced-choice across icons representing ‘‘Definitely Reversal,’’

‘‘Maybe Reversal,’’ ‘‘Maybe Normal,’’ ‘‘Definitely Normal.’’ All analyses binarized these and all other responses (e.g., reversal,

normal). Presentation of all screens was self-paced. The three charities (The Southeast Alaska Conservation Council, Canine Assis-

tants, Pasadena Humane Society and SPCA) were selected based on a previous charitable giving experiment [19] which found that

they were equally preferred by individuals with ASD and matched controls. To facilitate understanding of the mode structure,

participants completed a series of practice trials (21-25) in which they were explicitly told the programmode (‘‘normal’’ or ‘‘reversal’’)

via the display of a mode-specific icon.

Mentalizer task (Figure 1)

In the Mentalizer task, participants (Mentalizers) watched an Agent perform the Charity task while learning about and tracking the

Agent’s beliefs (about program mode) and intentions (to donate or take) from trial to trial. Whereas the Agent had to infer the current

program mode (‘‘normal’’or ‘‘reversal’’) based on the reversal history, the Mentalizer was always explicitly informed about the true

mode. This task structure created opportunities for the Mentalizer to represent the Agent’s false beliefs about the program mode,

a gold standard of traditional ToM tasks [14]. Thus, participants had to represent the Agent’s beliefs (true or false), and integrate

that representation with their expectation of Agent intent (to donate or take) in order to correctly predict the Agent’s actions. On

each trial the Mentalizer was asked to answer 3 questions: 1) does the Agent intend to donate to the charity or not? (‘‘donate’’ or

‘‘take’’), 2) what mode does the Agent believe the program to be in? (‘‘normal’’ or ‘‘reversal’’), and 3) what choice will the Agent

make? (‘‘donate’’ or ‘‘take’’; the order of questions 1 and 2 is random). Following these predictions, the Mentalizer was first shown

what the Agent chose, and then whether the computer reversed the choice or not, and where the money ended up. At random points

during the experiment, probe trials required the Mentalizer to indicate the current mode of the program, ensuring that they kept it in

mind while tracking the Agent’s true and false beliefs. Agent choices were simulated by combining beliefs about the mode (normal or

reversal) from real participants on the Charity task with simulated idiosyncratic preferences for the different charities (choices were

always 100% consistent with simulated preferences; see simulation of Agent choices below).

Background Assesment

Because participants were part of a database maintained in our laboratory at the California Institute of Technology, they had all

completed a battery of different measures related to Social Cognition (see Table S1 for average scores). When available in the data-

base, we obtained scores for the ‘‘reading the mind in the eyes’’ task [21] (RMET), Autism Spectrum Quotient [22] (AQ), the Empathy

Quotient [42] (EQ), the Systematizing Quotient [43] (SQ), and the Social Network Index [20] (SNI). When not available in the database,

the missing measures were administered on the day of testing.

Autism Diagnostic Observation Schedule

All ASD participants completed the Autism Diagnostic Observation Schedule (ADOS, Module 4; [17]), a method of quantifying the

severity of behavioral symptoms of autism in an individual. The main component of an ADOS evaluation is a structured 1-hour inter-

view of a participant by a trained experimenter. A video of this interaction was scored to consensus by trained raters [18] on several

metrics. Thesemetrics relied upon the standard algorithm, and on an algorithm that has been developedmore recently [13] to include

a Social Affect (SA) domain and Calibrated Severity Scores (CSS). Data analysis focused on CSS as recommended; however, for
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completeness we provide a summary of both raw and CSS data using the updated algorithm (ADOS2) for our ASD participants

(Table S2) as well as their raw scores for sections A and B of the standard algorithm (ADOS).

Apparatus
All analyses were performed inMATLAB (Mathworks Inc., Natick, MA, USA), and behavioral data was collected on an iMac computer

using MATLAB and Psychtoolbox 3 [33, 34].

Charity task trial order and Agent generation
Trial orders (i.e., assignment of trial mode, reversal outcome, charity, and monetary outcomes) for the Charity task were constructed

to facilitate stability of participant beliefs and increase the probability of false beliefs. Agent choices presented during the Mentalizer

task were generated by combining the Charity task beliefs of real participants with simulated preferences for charities. Choices were

simulated to ensure that they were 100% consistent with agent preferences as it was determined in early testing that lower agent

choice consistency rates significantly impaired performance. Agent behavior was generated according to two algorithms designed

to meet the above constraints. No differences were identified in participant performance across the algorithms.

Version 1

The algorithm for the generation of version 1 trial orders was developed over a series of pilot studies that investigated how manip-

ulation of mode contingencies and durations influenced participant beliefs with a focus on prolonged periods of belief stability and

maximizing false belief rate. The algorithm that came out of this initial investigation is detailed below.

Generation of version1 trial orders: For the Charity task, two sets of mode (normal/reversal) and reversal outcome (participant

choice executed or reversed) histories (105 trials total) were created with the constraints that mode durations (in number of trials)

were chosen from two uniform distributions (3-5 and 8-12 trials) in a manner that ensured approximately equal representation of

each mode across the full experiment. This configuration was developed over a series of pilot studies and chosen because it

increased the probability of false belief trials (i.e., trials in which participants’ beliefs about the program mode were incorrect).

Then reversal outcomes (executed/reversed) for all trials in a given mode were set to match the contingencies of their particular

mode (65% executed for normal mode, 35% executed for reversal mode) and randomly distributed across the trials belonging to

that mode. Finally, the charity and agent monetary outcome ($7-$13; uniform distribution) order for each history was pseudo-

randomly generated with the following constraints: The exact same combination of charity and agent monetary outcome could

not occur on consecutive trials and neither charity type, nor agent monetary outcome, could occur on more than 2 consecutive trials.

The charity monetary outcomewas kept constant across all trials ($10). One of the resulting two trial orders was randomly assigned to

each participant completing the Charity task.

Creation of version 1 agents: To create the Agent data for the Mentalizer task, two additional trial orders were created using the

above algorithm and 6 participants were recruited to complete the Charity task as potential agents. Participants were recruited

from the population surrounding the California Institute of Technology in Pasadena, CA and were paid $20/hr. The belief data for

each participant were fit with a learning model that used a basic Rescorla-Wagner [44] update rule with an unbiased initial belief

(i.e., p = 0.5). Based on this analysis, two participants (one for each trial order) for whom the belief model predicted a similar level

(�70%) of actual participant beliefs were chosen to serve as agents for theMentalizer task. For each of these agents, an idiosyncratic

set of charity preferences was randomly assigned such that one charity was preferred and the other two disliked. Using these charity

preferences (as well as the inverse set of preferences for each agent) two sets of simulated charity choices were created for each

agent by combining the real beliefs of the participants from the final 80 trials of their charity data (i.e., after practice) with the randomly

assigned charity preferences so that agent behavior was 100%consistent with their actual belief and simulated preference on a given

trial. Participants completing theMentalizer task were randomly assigned one of the resulting 4 (2 agents X 2 inversely-related charity

preferences) simulated agents to observe.

Version 2

We developed a second algorithm for generating Charity task trial orders and simulating agent data that had the following goals:

1) elicitation of stable periods of participant (and therefore agent) belief, 2) maximization of potential for false beliefs (i.e., trials on

which participant holds incorrect beliefs about the mode), and 3) maximization of agent learnability.

Generation of version 2 trial orders: First, 10,000 sets of mode (normal/reversal) and reversal outcome (executed/reversed)

histories (84 trials total) were created. Mode durations (in number of trials) were chosen from two uniform distributions (3-5 trials

and 8-12 trials) in a manner that ensured approximately equal representation across all trials and modes. Each mode was in effect

for 42 trials overall. The outcomes of each trial (whether or not the Agent’s decision was executed or reversed) were generated by

setting the total number of executed trials to 27/42 (64.3%), for normal mode and 15/42 (35.7%) for reversal mode, then randomly

distributing the executed outcomes across all trials in the respective mode. Probabilistic belief estimates were then simulated using a

basic Rescorla-Wagner [44] update rule with an unbiased initial belief (i.e., p = 0.5) and a learning rate of 0.3. This yielded 10,000 sets

of modes, reversal outcomes, and simulated agent beliefs.

For each simulated belief set, a metric of belief stability was calculated by first binarizing probabilistic beliefs and then calculating

the number of belief switches (i.e., changing of belief from one mode to another) across all 84 trials. The 95% of sets with the least

stable agent beliefs (i.e., with the most switches) were then discarded. Of the remaining 500 sets, those with binarized belief histories

that disagreed with the true mode (i.e., false beliefs) on 30% to 40% of trials were identified (n = 248) and the rest discarded.
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The remaining sets were then assigned charity information (28 trials per charity). For each set, 100 permutations of the charity and

agent monetary outcome order ($7-$13; uniform distribution) were pseudo-randomly generated with the following constraints: The

exact same combination of charity and agent monetary outcome could not occur on consecutive trials and neither charity type, nor

agent monetary outcome, could occur onmore than 2 consecutive trials. The charity monetary outcomewas kept constant across all

trials ($10). Idiosyncratic agent preferences for the charities were then pseudo-randomly assigned such that simulated agents either

preferred one charity and disliked the other two, or they preferred two charities and disliked one. Finally, agent choices were

simulated by combining the binarized simulated beliefs with the agent preferences so that agent behavior was 100% consistent

with their belief and preference on a given trial.

To assess simulated agent learnability, for each of the 100 charity order permutations within the 248 simulated agent belief and

choice histories we simulated Mentalizer belief and intent learning. Belief learning was modeled with a simple Rescorla-Wagner

update rule with the learning rate set to 0.681. Intent learning was modeled using the simulated Mentalizer beliefs to interpret the

Agent choices and a Bayesian update rule (a simple beta distribution weighted by a learning rate) with a learning rate of 0.5575.

Both model learning rates were estimated from fits to pilot data (participants from version 1). The Bayesian model was an early

version (and performed similarly) to the RW_overT model for Mentalizer intent learning which stabilizes over time (M1 Figures 3

and S2). Intent model accuracy (binarized intent predictions compared to simulated Agent charity preferences) was calculated for

the 4th quarter of trials and sets for which learning was less than 100% accurate were discarded.

Following this, for each of the 248 Agent belief and choice histories, we calculated the average strength (distance from p = 0.5) of

the 4th quarter of Mentalizer intent probabilistic model predictions for each of the remaining charity order permutations and selected

the set with the highest mean value, yielding 248 Agent belief histories with their associated mode and reversal outcome histories. Of

these 248, the top 20 (based on the same strength metric as above) were selected as candidate mode and outcome histories. Finally,

for each of the 20 orders, practice trials (n = 21) were selected randomly from another order were added to the front of each order,

making each 105 trials long (21 practice, 84 test).

Creation of version 2 agents: In order to generate real (i.e., human) Agent beliefs for use in theMentalizer experiment, 8 participants

were recruited to complete multiple runs (4 histories per session; 1-4 sessions per participant) of the Charity task using the 20 gener-

ated mode and reversal histories. Data collection continued until behavioral data for each of the 20 histories had been collected

from 4 different participants. Participants were recruited from the California Institute of Technology Summer Undergraduate

Research Fellowship program and were paid $20/hr. For each mode and reversal history, we calculated the difference between

the average number of times participants believed the mode switched over the course of the experiment and the true number of

mode switches (average minus true). Histories were rank ordered, with those that had less behavioral than actual switches (an

indicator of higher false belief rates) ranked highest, and the top 10 histories were selected.

The specific belief behavioral data for each history was chosen by selecting the participant whose belief accuracy most closely

resembled the average belief accuracy of all 4 participants for that history. Charity preferences for each agent history were simulated

in the samemanner as in version 1 above. Note: a programing error meant that, for version 2 only, charity preferenceswere fixed such

that agents preferred the Pasadena Humane Society and did not prefer the other 2 charities, given that this was consistent across

populations, unknown to the participants, and the charities were matched for interest-level, we are confident this did not bias our

findings. Finally, 2 Agents were selected at random for use with data collection in order to match the number of Agents used in

Version 1 of the task.

ToM Learning Model
Mentalizer Belief (i.e., whether the current program mode was ‘‘normal’’ or ‘‘reversal’’) and Intent (i.e., preference for the different

charities) estimates were modeled using a combination of modified reinforcement learning models [44] (Figure 3A). The belief model

used a simple Rescorla-Wagner update rule and was flexible in order to accommodate switches of program mode (and therefore,

belief) over the course of the experiment. The equation for the belief model was:

Bt+ 1 =Bt + ðlBelÞ�MPEt;

MPEt = ðMOtBtÞ
in which theMentalizer’s probabilistic estimate that the Agent believes the program is in normal mode on the next trial (Bt+1) is equal to

their probabilistic estimate (Bt; range [0 to 1]) on trial t, plus their mode prediction error on trial t (MPEt; range [-1 to 1]), scaled by their

learning rate (lBel; range [0 to 1]). Mode prediction error (MPEt) was equal to the reversal outcome they observed on trial t (i.e., did the

computer reverse their choice or not; MOt; 0 = reversed, 1 = not reversed) minus their estimate of Agent Belief on trial t (Bt).

The basic equation for the Intent model (see also Figure 3A) was similar to that of the Belief model with a slight adjustment. Given

that one’s preferences toward different charities are likely to be relatively stable, we modified the equation so that the influence of

prediction errors on probabilistic estimates of Agent Intent attenuated over time. In addition, to allow for correct interpretation of

choice behavior, the Choice outcomes were modified to take Agent Belief into account, creating Intent outcomes. For each charity

therewas a separatemodel tracking intent, and the trial number t refers to the number of trials specific to that charity. The equation for

the Intent model was as follows:
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It+1 = It + ðlInt=tÞ�IPEt;

IPEt = ðIOtItÞ;

IOt = jCOt + roundðBtÞ1 j
In which It is the Mentalizer’s probabilistic estimate (range: [0 to 1]) that the Agent intends to donate to a given charity on trial t (t being

specific to the charity). IPEt is the Intent Prediction Error on trial t, which is equal to the difference between the Intent outcome on

trial t (IOt) and It. Because the Agent’s belief about program mode varies across the experiment, IOt is a combination of the choice

outcome on trial t (COt) and the Agent’s current belief (Bt; this ensures that the intent outcome is the reverse of the choice outcome

when the Agent believes the program is in reversal mode).

Finally, Mentalizer predictions of Agent choices to donate on trial t (Ct) were modeled by combining the Mentalizer Belief (Bt) and

Intent (It) estimates according to the following equation:

Ct = j1roundðBtÞIt j
Which produces a choice prediction that is probabilistic and equal to It when the Agent believes the program is in Normal mode and

1-It when the Agent believes the program is in reversal mode.

Following the generation of estimates of Bt, It, and Ct, participant response probabilities were calculated according to the following

softmax function (in which Et is used to represent binarized versions of any of the estimates and p(Rt) is the probability of the Mental-

izer’s given response on trial t).

PðRtÞ= eðEtÞ

eðEtÞ + eð1�EtÞ

Alternative ToM learningmodels: While we focused our analyses on our a priorimodel (M1; Figure 3), we also ran a number of other

models (see Figures 4A and S2) to assess whether differences in performance could be explained by other strategies (for instance,

were individuals simply using the actual programmode to interpret Agent choices, rather than tracking Agent beliefs (M3; Figure 4A).

In Figure S2 we provide the model equations and a simple explanation for each. Ultimately, we investigated seven different models.

We note that no model was able to better explain Mentalizer performance in the CTL groups than our initial a priorimodel (Figure 4B).

QUANTIFICATION AND STATISTICAL DETAILS

Statistical significance
In keepingwith recent recommendations on reporting statistical analyses [15, 45], we eschew reporting of p values and instead report

effect sizes (often as mean differences) and bootstrapped 95% confidence intervals throughout. Effects with non-overlapping

confidence intervals are interpreted as statistically meaningful differences.

Behavioral Analysis
Charity Task

Three metrics were chosen to assess participant behavior in the charity task (Figure S1):

Belief Accuracy: Overall accuracy (compared to actual program mode) of participant responses when estimating program mode

(normal or reversed).

Intended Outcome: Proportion of trials that the participant indicated that the outcome of the trial was what they intended; i.e., the

participant wanted the money to go to the charity and the money went to the charity (this is not the same as #1, since belief about

program mode is inferred from history over trial outcomes, whereas whether the outcome was as intended is susceptible to the

trial-wise probabilistic nature of the program mode).

Consistency: Proportion of trials on which the answers the participant provided for belief and for intended outcome were consis-

tent with the choice reversal outcome of the trial; e.g., a trial was consistent if the participant believed the mode to be normal, the

computer *did not* reverse their choice, and the participant indicated they got the outcome they intended; a trial was inconsistent

if the participant believed the mode to be normal, the computer *did* reverse their choice, but the participant indicated they

received the outcome they intended.

Mentalizer Task

Participant accuracy (i.e., binarized responses compared to binarized Agent behavior) on the Mentalizer task was assessed for each

of the three responses provided on every trial (Belief, Intent, and Choice; Table S3). In addition, we calculated within-trial consistency

(i.e., whether a participant’s choice response on a given trial was consistent with their belief and intent responses for that trial;

Figure 2D and Table S3). Because Belief expectations reversed repeatedly over the course of the experiment, and Consistency is

a measure of within-trial logic (i.e., no learning component), we calculated overall accuracy for these behaviors (chance was

50%). In contrast, if participants learned about the Agents, then their Intent and Choice performance should increase over time.
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Therefore, to examine ToM learning we compared average accuracy for Intent and Choice on the last 30 trials to that on the

first 30 trials (Table S3).

ToM Model Fitting and Analysis
Learning Rate Estimation Procedure: Behavioral data for each group (CTL1, CTL2, and ASD) were fit with a Bayesian hierarchical

model (MATLAB code developed by S. Gershman and available online at https://github.com/sjgershm/mfit; download date

8/1/2018; code available at https://osf.io/ahp5q/) in which group priors were estimated for both Belief (lBel) and Intent (lInt) learning

rates and individual learning rates were subsequently estimated under these priors. 95% confidence intervals of learning rate means

were calculated by bootstrapping (5000 bootstraps) the individual fit results.

Out-of-sample Model Predictive Performance

To assess model predictive performance (Figure 3C), the group parameters estimated from the fits of the a priori model (M1) from

each of the control groups (CTL1 and CTL2; each matched to ASD on Age, Gender, Years of Education, and IQ; Table S1) were

used to calculate model predictive accuracy (i.e., how accurate model predictions were at predicting participant behavior) for

each participant in the other (out-of-sample) group (CTL 2 and CTL1, respectively) as well as for each participant in the ASD group.

95% confidence intervals were calculated by bootstrapping (5000 bootstraps) the participant predictive accuracies.

Correlation with other measures

In addition to assessing model performance, we were interested in exploring the correlation between participants’ individual

differences in performance (participant accuracy, model learning rates from individual fits) and participants’ individual differences

on intelligence (FSIQ) and social (AQ, EQ, SQ, RMET, and SNI) measures (Tables S5-6). To ensure no bias in correlational analyses

involving model parameters, all data from thementalizer task (CTL1, CTL2, and ASD) were combined and fit with a single hierarchical

model (using the a priori model M1).

DATA AND SOFTWARE AVAILABILITY

Complete raw data, experiment code (PsychToolBox 3 [33, 34]), materials, and analysis scripts (MATLAB), are available from the

authors and can be found online at https://osf.io/ahp5q/.
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